Жизнь Великих Людей

Эвклид

Евклид или Эвклид (др.-греч. ?????????, ок. 300 г. до н. э.) — древнегреческий математик. Мировую известность приобрёл благодаря сочинению по основам математики «Начала» (???????? букв. элементы).

Эвклид —  автор первых дошедших до нас теоретических трактатов по математике. Биографические сведения о жизни и деятельности Эвклида крайне ограничены. Известно, что он родом из Афин, был учеником Платона. Научная деятельность его протекала в Александрии, где он создал математическую школу.

Достижения в математике.

ЭвклидГлавные труды Эвклида «Начала» (латинизированное назв.- «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел, алгебры, общей теории отношений и метода определения площадей и объемов, включающего элементы пределов (Метод исчерпывания). В «Началах» Эвклид подытожил все предшествующие достижения греческой математики и создал фундамент для ее дальнейшего развития. Историческое значение «Начал» Эвклида заключается в том, что в них впервые сделана попытка логического построения геометрии на основе аксиоматики. Основным недостатком аксиоматики Эвклида следует считать ее неполноту; нет аксиом непрерывности, движения и порядка, поэтому Эвклиду часто приходилось апеллировать к интуиции, доверять глазу. Книги XIV и XV являются более поздними добавлениями, но являются ли первые тринадцать книг созданием одного человека или школы, руководимой Эвклидом, не известно. С 1482г. «Начала» Эвклида выдержали более 500 изд. на всех языках мира.

«Начала»

Первые четыре книги «Начал» посвящены геометрии на плоскости, и в них изучаются основные свойства прямолинейных фигур и окружностей.

Книге I предпосланы определения понятий, используемых в дальнейшем. Они носят интуитивный характер, поскольку определены в терминах физической реальности: «Точка есть то, что не имеет частей». «Линия же — длина без ширины». «Прямая линия есть та, которая равно расположена по отношению точкам на ней». «Поверхность есть то, что имеет только длину и ширину» и т.д.

За этими определениями следуют пять постулатов: «Допустим:

  1. что от всякой точки до всякой точки можно провести прямую линию;
  2. и что ограниченную прямую можно непрерывно продолжить по прямой;
  3. и что из всякого центра и всяким раствором может быть описан круг;
  4. и что все прямые углы равны между собой;
  5. и если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньше двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых.»

Три первых постулата обеспечивают существование прямой и окружности. Пятый, так называемый постулат о параллельных — самый знаменитый. Он всегда интриговал математиков, которые пытались вывести его из четырех предыдущих или вообще отбросить, до тех пор, когда в XIX в. обнаружилось, что можно построить другие, неевклидовы геометрии и что пятый постулат имеет право на существование. Затем Эвклид сформулировал аксиомы, которые в противоположность постулатам, справедливым только для геометрии, применимы вообще ко всем наукам. Далее Эвклид доказывает в книге I элементарные свойства треугольников, среди которых — условия равенства. Затем описываются некоторые геометрические построения, такие, как построение биссектрисы угла, середины отрезка и перпендикуляра к прямой. В книгу I включены также теория параллельных и вычисление площадей некоторых плоских фигур (треугольников, параллелограммов и квадратов). В книге II заложены основы так называемой геометрической алгебры, восходящей к школе Пифагора. Все величины в ней представлены геометрически, и операции над числами выполняются геометрически. Числа заменены отрезками прямой. Книга III целиком посвящена геометрии окружности, а в книге IV изучаются правильные многоугольники, вписанные в окружность, а также описанные вокруг нее.

Теория пропорций, разработанная в книге V,одинаково хорошо прилагалась и к соизмеримым величинам и к несоизмеримым величинам. Эвклид включал в понятие «величины» длины, площади, объемы, веса, углы, временные интервалы и т. д. Отказавшись использовать геометрическую очевидность, но избегая также обращения к арифметике, он не приписывал величинам численных значений. Первые определения книги V «Начал» Эвклида:

  1. Часть есть величина (от) величины, меньшая (от) большей, если она измеряет большую.
  2. Кратное же — большая (от) меньшей, если она измеряется меньшей.
  3. 3. Отношение есть некоторая зависимость двух однородных величин по количеству.
  4. Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга.
  5. Говорят, что величины находятся в том же отношении: первая ко второй и третья к четвертой, если равнократные первой и третьей одновременно больше, или одновременно равны, или одновременно меньше равнократных второй и четвертой каждая каждой при какой бы то ни было кратности, если взять их в соответственном порядке.
  6. Величины же, имеющие то же отношение, пусть называются пропорциональными. Из восемнадцати определений, помещенных в начале всей книги, и общих понятий, сформулированных в книге I, с восхитительным изяществом и почти без логических недочетов Эвклид вывел (не прибегая к постулатам, содержание которых было геометрическим) двадцать теорем, в которых устанавливались свойства величин и их отношений.

В книге VI теория пропорций книги V применяется к прямолинейным фигурам, к геометрии на плоскости и, в частности, к подобным фигурам, причем «подобные прямолинейные фигуры суть те, которые имеют углы, равные по порядку, и стороны при равных углах пропорциональные». Книги VII ,VIII и IX составляют трактат по теории чисел; теория пропорций в них прилагается к числам. В книге VII определяется равенство отношений целых чисел, или, с современной точки зрения, строится теория рациональных чисел. Из многих свойств чисел, исследованных Эвклидом (четность, делимость и т.д.), приведем, например, предложение 20 книги IX, устанавливающее существование бесконечного множества «первых», т.е. простых чисел: «Первых чисел существует больше всякого предложенного количества первых чисел». Его доказательство от противного до сих пор можно найти в учебниках по алгебре.

Книга X читается с трудом; она содержит классификацию квадратичных иррациональных величин, которые там представлены геометрически прямыми и прямоугольниками. Вот как сформулировано предложение 1 в книге X «Начал» Эвклида: «Если заданы две неравные величины и из большей вычитается часть, большая половины, а из остатка — снова часть, большая половины, и это повторяется постоянно, то когда-нибудь остается величина, которая меньше, чем меньшая из данных величин». На современном языке: Если a и b — положительные вещественные числа и a >b, то всегда существует такое натуральное число m, что mb > a. Эвклид доказал справедливость геометрических преобразований.

Книга XI посвящена стереометрии. В книге XII, которая также восходит, вероятно, к Евдоксу, с помощью Метода исчерпывания площади криволинейных фигур сравниваются с площадями многоугольников. Предметом книги XIII является построение правильных многогранников. Построение Платоновых тел, которым, по-видимому завершаются «Начала», дало основание причислить Эвклида к последователям философии Платона.

 Области интересов.

Кроме «Начал» до нас дошли такие произведения Эвклида: книга под латинским названием «Data» («Данные») (с описанием условий, при которых какой-нибудь математический образ можно считать «данным»); книга по оптике (содержащая учение о перспективе), по катоптрике (излагающую теорию искажений в зеркалах), книга «Деление фигур». Не сохранилась педагогическая работа Эвклида «О ложных заключениях» (в математике). Эвклид написал также сочинения по астрономии («Явления») и музыке.